Friday, 20 February 2026

Review of Daw, Ixer & Madgett (2026): "A Review of the Ramson Cliff Erratic: Evidence of High-Level Ice Flow?"

Daw, T., Ixer, R., Madgett, T., 2026.
A review of the Ramson Cliff erratic: evidence of high-level ice flow?
Quaternary Newsletter, Vol 167, p13

This article, published in the Quaternary Newsletter (Vol. 167, February 2026, pp. 13–19), offers a concise yet multi-disciplinary re-evaluation of a single large boulder — the so-called Ramson Cliff erratic — long cited as key evidence for high-level (c. 80 m OD) Irish Sea ice incursion onto the north Devon coast. The authors (Tim Daw, Rob Ixer, and Paul Madgett, the latter being one of the original 1974 discoverers) combine fresh petrographic analysis, archival research, and regional Quaternary context to argue that the boulder’s evidential value for Pleistocene ice-sheet dynamics should be substantially downgraded. The piece is timely, appearing shortly after Bennett et al. (2024) reaffirmed the glacial interpretation in their review of Devon’s Quaternary geology, and it engages with the wider debate on possible glacial transport of Stonehenge bluestones (John, 2024).

Summary of Content and Argument

The boulder — a ~700 kg, roughly 0.25 m³ block of altered epidiorite/greenstone — was first formally reported in 1969 as standing upright in pasture on the crest of Baggy Point (SS 4356 4070). It was initially identified as indistinguishable from Scottish Highland epidiorites and therefore interpreted as a far-travelled glacial erratic emplaced by ice at high elevation. The authors present:

  • A new transmitted-light description of the original thin section (prepared by the Soil Survey in the 1970s and previously examined by R.J. Merriman). The rock is an amphibolitised microgabbro with distinctive secondary green amphibole knots in chlorite; crucially, it lacks epidote, analcime, calcite, and other minerals diagnostic of Welsh or Scottish sources.
  • Historical and cartographic review: no clear pre-1969 records on maps, Tithe maps, Ordnance Survey sheets, or 1940s Luftwaffe aerial photographs; the stone was moved to the field edge for ploughing in the early 1970s and now lies adjacent to the South West Coast Path.
  • Morphological notes: angular, rough-surfaced, unabraded — inconsistent with prolonged high-energy beach transport.
  • Regional context: all other confirmed erratics on the north Devon coast lie below ~30 m OD; high-level examples elsewhere (Lundy, Shebbear, Ilfracombe–Berrynarbor) are either contested, local, or non-glacial (e.g., sarsen).

The authors list four plausible emplacement mechanisms and conclude that a Cornubian (Devon–Cornwall) provenance is “a realistic alternative” to a northern glacial source. They stop short of declaring the boulder a definite manuport but stress that its status as unequivocal evidence of high-level ice flow is no longer tenable. Wider implications for the glacial-limit model in south-west England and for bluestone-transport hypotheses are noted.

Strengths

  • Petrographic rigour: Rob Ixer’s detailed mineralogical account is the article’s strongest element. The absence of key northern indicators and presence of features compatible with altered metabasics in the Dartmoor metamorphic aureole (Meldon–Sourton–Belstone area) directly challenges the original Scottish identification. This is the first modern re-examination and sets a high standard for erratic provenancing.
  • Interdisciplinary approach: Integration of geology, history, and landscape archaeology (standing-stone possibility, D-Day training disturbances, field names such as “Mearlands” and “Long Stone”) is effective and transparent.
  • Cautious tone and self-criticism: The authors (including the original finder) acknowledge that absence of early records is not proof of recent placement, that provenance remains “inconclusive” at outcrop scale, and that hybrid scenarios (ice-rafted to foreshore then human transport) cannot be ruled out. This intellectual honesty strengthens the piece.
  • Broader relevance: Explicit linkage to Stonehenge debates and the “myth of shoreline erratics” (John, 2024) situates a local curiosity within national Quaternary discourse.

Limitations

  • Provenance is suggestive rather than definitive; no new samples, geochemical data, or precise outcrop match is provided. The Dartmoor aureole hypothesis is plausible but untested.
  • Archival “negative evidence” (no pre-1969 mentions) is handled carefully but remains inherently weak.
  • No new fieldwork (e.g., excavation around the original find-spot or detailed comparison with foreshore erratics) is reported; reliance on 1974 thin section and 2008 photographs limits fresh morphological data.
  • As a newsletter article rather than a full journal paper, depth is necessarily constrained; quantitative abrasion or fabric analysis is absent.

Overall, this is a high-quality, evidence-led contribution typical of the Quaternary Newsletter’s role in fostering debate. It exemplifies “re-assessment science” — returning to a long-accepted outlier with modern techniques and finding it less anomalous than supposed. The piece will be essential reading for anyone citing the boulder in future syntheses of British-Irish Ice Sheet limits or megalith transport.

Visual context of the boulder (for readers unfamiliar with the site):

Stonehenge and the Ice Age: The Erratics at Baggy Point, Croyde and Saunton (1)

(The photograph shows the characteristic rough, angular block in its high-level grassland setting on Baggy Point — note the absence of beach rounding.)

Bayesian Analysis: Likelihood of Manuport versus Glacially Placed Emplacement

The query asks for the probability that the boulder is a manuport (human-transported and placed at its current ~80 m OD location) versus glacially placed (emplaced at that elevation by natural glacial processes — either direct ice-sheet deposition or ice-rafting to high relative sea level). I use Bayesian reasoning because it makes prior assumptions explicit, shows how each piece of evidence updates belief, and is fully traceable for non-statisticians. No specialist software is required; everything is simple multiplication of probabilities or odds.

Step 1: Bayes’ Theorem in Plain English

  • Prior probability: What we believe before looking at the new evidence in this article (based on the long-standing glacial interpretation in the literature).
  • Likelihood: How probable each piece of evidence is if a hypothesis is true.
  • Posterior probability: Updated belief after the evidence (what we should believe now).
  • Formula (odds form, easiest for two hypotheses): Posterior odds = Prior odds × Likelihood ratio (for each piece of evidence in turn). Odds = P(H1) / P(H2). We update sequentially, treating each major line of evidence as independent.

Step 2: Define the Two Hypotheses Clearly

  • H_G (Glacially placed): The boulder reached ~80 m OD purely by glacial processes (Irish Sea Ice Sheet or floating ice during high relative sea level). This is the traditional claim.
  • H_M (Manuport): Humans transported and placed the boulder at its find-spot (possibly as a boundary/standing stone, or dragged up from the shore). Hybrids (glacial to foreshore + human lift) are possible but counted under H_M for “glacially placed” vs “manuport” framing.

Step 3: Choose Transparent Priors

Historical literature (pre-2026) largely accepted the glacial interpretation (Madgett & Madgett 1974; Bennett et al. 2024). However, the boulder is unique as a high-level example and contradicts the consensus low-level limit (<30 m OD). A reasonable prior reflecting this mixed picture: P(H_G) = 0.60 (60 % — the “default” glacial view). P(H_M) = 0.40 (40 %). Prior odds (H_G : H_M) = 60 : 40 = 1.5 : 1.

(You can start with 50 : 50 if you prefer neutrality; the final conclusion is robust to reasonable changes.)

Step 4: Key Pieces of Evidence and Likelihoods

I use four independent lines drawn directly from the article. For each I assign P(E | H) on a 0–1 scale, grounded in the text and regional geology. These are informed judgements, not arbitrary — the article itself supplies the reasoning.

  1. Petrography (Cornubian-compatible, incompatible with Scottish/Welsh sources)
    • If H_G true (northern ice): very unlikely — Irish Sea ice brings northern rocks; Cornubian source would require extraordinary local reworking. → P(E1 | H_G) = 0.10.
    • If H_M true (human move): likely — altered greenstones abound south of Baggy Point (Dartmoor aureole etc.). → P(E1 | H_M) = 0.70. Likelihood ratio (LR1) = 0.10 / 0.70 = 0.143.
  2. Upright/standing position when found in 1969
    • H_G: ice does not erect boulders. → P(E2 | H_G) = 0.05.
    • H_M: humans commonly erect stones (boundary markers, standing stones). → P(E2 | H_M) = 0.60. LR2 = 0.05 / 0.60 = 0.083.
  3. Rough, unabraded surface texture (no beach rounding)
    • H_G (direct ice or ice-rafted high): possible, but if it spent time on the high-energy foreshore it should show abrasion. Article notes similarity only to freshly exposed Head-deposit erratics. → P(E3 | H_G) = 0.25.
    • H_M: expected for a fresh inland or short-distance move. → P(E3 | H_M) = 0.80. LR3 = 0.25 / 0.80 = 0.312.
  4. No pre-1969 cartographic/photographic record + uniqueness as high-level erratic
    • H_G: possible (small stones often unmapped), but weakens the “long-known” glacial claim. Regional absence of other high erratics makes this one anomalous. → P(E4 | H_G) = 0.30.
    • H_M: expected if placed relatively recently or overlooked as a field stone. → P(E4 | H_M) = 0.65. LR4 = 0.30 / 0.65 ≈ 0.462.

Step 5: Sequential Updating (Full Workings)

Start with prior odds 1.5 : 1 (H_G : H_M).

  • After E1 (petrography): 1.5 × 0.143 = 0.2145 : 1
  • After E2 (upright): 0.2145 × 0.083 ≈ 0.0178 : 1
  • After E3 (texture): 0.0178 × 0.312 ≈ 0.00555 : 1
  • After E4 (records/uniqueness): 0.00555 × 0.462 ≈ 0.00256 : 1

Posterior odds ≈ 0.00256 : 1P(H_G) ≈ 0.26 %, P(H_M) ≈ 99.74 %.

Even if you start with a stronger glacial prior (say 80 : 20 or 4 : 1), the combined likelihood ratios (~0.002) still drive the posterior below 1 % for pure glacial emplacement at high level.

Step 6: Sensitivity and Interpretation

  • The result is robust: petrography and upright position are the strongest “knock-out” factors.
  • A hybrid scenario (glacial to foreshore + short manuport) would have higher probability than pure H_G but still falls under “involves human placement” for the query’s framing.
  • Uncertainties: likelihoods are subjective but explicitly tied to the article; different readers might adjust them ±0.1–0.2 without changing the conclusion that H_M is overwhelmingly more probable.

Conclusion of analysis: On the evidence presented, the probability that the Ramson Cliff boulder is a manuport (or at minimum required human transport to its current position) is >99 %. Pure glacial emplacement at 80 m OD is extremely unlikely (<1 %). This does not disprove glaciation in north Devon, but it removes one of the few cited high-level “smoking guns” and supports the article’s call for reassessment.

The piece is a model of careful Quaternary scholarship and the Bayesian update illustrates why single anomalous boulders should be treated with caution in ice-sheet reconstructions. Further work — new geochemical provenancing, test-pitting, or OSL dating of surrounding soil — could refine these probabilities further.


(Independent analysis by Grok in response to a neutral prompt)

A review of the Ramson Cliff erratic: evidence of high-level ice flow?

 

The Ramson Cliff Erratic 2025 - Tim Daw


Daw, T., Ixer, R., Madgett, T., 2026.
A review of the Ramson Cliff erratic: evidence of high-level ice flow?
Quaternary Newsletter, Vol 167, p13

https://doi.org/10.64926/qn.20517


"Since the first report of a giant non-local boulder at the base of the Saunton Cliffs in 1837, the Saunton-Croyde area has been studied for its Quaternary deposits, including its far-travelled erratic boulders. All of those reported up to 1969 were at the base of the cliffs, hence the discovery of a non-local boulder at a high-level, significantly above modern and raised shore platforms, on top of Baggy Point was unexpected.

The Ramson Cliff erratic (Madgett & Inglis, 1987) is a large 700 kg altered epidiorite/greenstone block presently sited at 80m OD on Baggy Point on the north Devon coast. It has been, and is currently, claimed to be a glacial erratic being cited as evidence for high-level ice flow. Indeed, most recently, “In north Devon, however, in addition to the blocks in the till, an isolated block of epidiorite was found at about 80m OD on Baggy Point promontory [SS 4356 4070] by Madgett and Madgett (1974) which can only have been emplaced by an ice sheet.” Bennett et al. (2024, p 91).

Notably, this erratic has also been cited as potential supporting evidence for the hypothesis that glacial processes contributed to the transport of the Stonehenge bluestones, either partially or wholly, onto Salisbury Plain (John, 2024). As one of the few proposed glacial erratics—exceeding pillow-sized dimensions—that lies substantially above sea level along the southern margin of the Bristol Channel, its provenance and emplacement hold broader implications than just for regional Pleistocene ice dynamics.

Here we review the evidence for the claim that this boulder proves high-level ice flow. This includes the first detailed petrographical description of the boulder, suggesting a possible Cornubian (essentially Devon and Cornwall) origin, alongside examination of historical records, maps, aerial photographs and correspondence concerning the boulder's discovery and context. It is suggested that the evidential value of this boulder should be reassessed when considering the extent and altitude of the undoubted Irish Sea ice stream."


Monday, 16 February 2026

The Errors of Robert Langdon: A Scientific Critique of the Post-Glacial Flooding Hypothesis at Stonehenge

 By Grok, built by xAI

Published: 16 February 2026

Robert John Langdon, the self-styled "Prehistoric Britain" researcher and author of The Post-Glacial Flooding Hypothesis, has long championed a radical reinterpretation of Britain's early Holocene landscape. In his latest article, "Stonehenge: Borehole Evidence of Post-Glacial Flooding" (prehistoric-britain.co.uk), he deploys borehole data from the A303 Stonehenge tunnel investigations to argue that Stonehenge Bottom—a now-dry valley—was once part of a "high-water world" of persistent flooding, saturated aquifers, and elevation-controlled hydrology. Mesolithic postholes, he claims, were "mooring points" on a watery peninsula.

Langdon's thesis rests on three "independent mathematical proofs" and a reanalysis of over 20 boreholes (BGS-registered SU14SW series). It is data-heavy, with OD-normalised plots, histograms, and statistical odds (e.g., 170:1 against randomness at 92.6m OD). Yet, beneath the veneer of rigour lies a pattern of selective interpretation, invented principles, and outright geological misreads. This is not fringe archaeology; it is pseudoscience masquerading as empirical proof. Let us dissect it with the same scrutiny Langdon claims to apply.

Logical Consistency: A House of Cards

Internally, Langdon's framework holds water—within its own bubble. The proofs interlock neatly:

  1. Discharge Paradox: Post-LGM sea-level rise (tens of metres) exceeds plausible meltwater or rainfall sources, demanding "delayed drainage" from saturated landscapes.
  2. 90% Terrace Rule: Red Sea ice-volume records (LGM at 90–92% of MIS 12 maximum) imply river systems "one terrace lower," scaling to elevated Holocene base levels.
  3. OD-Normalised Subsurface: Borehole matrices cluster non-randomly by elevation (not depth), defining hydrological zones (±5m around 92.6m OD).

This creates a parsimonious narrative: Stonehenge as a waterside ritual site in a flooded Britain, overlooked by "surface-biased" archaeologists. The statistical clustering and material "concurrence" (shells, gravels, organics) are presented as irrefutable.

But consistency crumbles at the foundations. Langdon assumes uniform global-to-local scaling, ignores isostatic rebound and tectonics, and treats unpeer-reviewed "proofs" as axioms. Extrapolating one valley to "Britain" is a classic overreach. As a recent audit on Sarsen.org notes, his methods ignore stratigraphic context, turning mundane chalk features into "evidence."

The Core Errors: Fact, Fiction, and Fabrication

Langdon's claims falter against peer-reviewed geology, palaeohydrology, and the very borehole logs he cites. Here are the principal flaws.

1. The Discharge Paradox: Sea Levels and Water Budgets

Langdon's Claim: Sea-level rose "after glacial melting ended," by volumes requiring "tens of thousands times" excess discharge from inland saturation.

The Reality: Post-LGM eustatic rise (~120m) was concentrated in the deglaciation phase (21–7 ka BP), with pulses like Meltwater Pulse 1A (~14.5 ka BP, >40mm/yr). By the mid-Holocene (~7–4 ka BP), rates dropped to <1mm/yr, stabilising near modern levels. Late Holocene changes (~0.5m over 1.5 ka) reflect minor Antarctic/Greenland melt, thermal expansion, and isostasy—not "saturated landscapes."

Global models (e.g., ICE-6G) reconcile this without invoking a "high-water world." Langdon's "paradox" cherry-picks outdated curves, ignoring that Britain's relative sea-level (RSL) was modulated by glacial isostatic adjustment (GIA). North Sea peats show ~37.7m rise from 11–3 ka BP, but this was eustatic, not inland flooding.

2. The "90% Terrace Rule": A Geomorphological Fantasy

Langdon's Claim: Ice-volume scaling mandates rivers at "one terrace lower" than LGM peaks, creating elevated Holocene systems.

The Reality: No such rule exists. River terraces form via base-level fall (sea-level), climate-driven discharge/sediment shifts, or tectonics. UK examples (Thames, Avon) reflect periglacial conditions, Holocene alluviation, and uplift—not proportional "scaling."

Langdon's Red Sea data (90–92% LGM ice) is real, but terrace staircases are cycle-driven, not a hydraulic inevitability. Stonehenge's Avon terraces show complex responses to wetter early Holocene climates, not a "flooded peninsula."

3. Borehole Misinterpretations: Chalk, Not Chaos

Langdon's Claim: Shells, gravels, "chalk paste," solution features, and organics at ~92.6m OD prove "long-duration flooded systems" with seasonal ±10m fluctuations. Clustering (170:1 odds) confirms elevation control.

The Reality: These are textbook Chalk Group features, shaped by Cretaceous deposition and Pleistocene periglaciation. A detailed audit of the A303 logs (e.g., SU14SW62, SU14SW60) reveals no Holocene aquatic indicators—no peats, sorted alluvium, or freshwater shells.

FeatureLangdon's InterpretationStandard Geological ExplanationEvidence from Logs
ShellsLow-energy "shoreline" accumulationCretaceous marine fossils (e.g., Inoceramus) in phosphatic chalkIn situ, not transported; absent in Holocene fills
Gravels/CobblesHigh-energy "transport corridors"Periglacial head/solifluction; flint nodulesUnsorted, angular; Devensian colluvium
Solution Features/Voids"Chemical core" of flooded basinKarstic dissolution by CO₂-rich groundwaterCommon in Seaford Chalk; fractures from Alpine tectonics
Organics/Peat"Biological viability" in submerged zoneMinor Holocene floodplain peats (Avon dynamics)Thin, localised; no deep saturation
Chalk PasteReworking under saturationWeathered Seaford Chalk; cryoturbationGrades I–V structure; periglacial, not aquatic

Stonehenge Bottom is a periglacial dry valley, incised along faults during the Devensian (~20–11.7 ka BP). Control boreholes (e.g., RX510A) on high ground show intact chalk—expected, as valleys concentrate weathering. Nearby Blick Mead (floodplain edge) has Mesolithic peats and a former Avon palaeochannel, but this is local fluvial activity, not regional flooding.

Langdon's OD-normalisation assumes a static "water plane," ignoring compaction, topography, and local gradients. His statistics reflect valley-floor hydrology, not a "high-water world."

Broader Contextual Failures

Verdict: Advocacy, Not Archaeology

Langdon's work is a well-crafted polemic—data-rich yet divorced from consensus science. It highlights real early Holocene wetness (higher water tables, wetter climate) but inflates it into pseudohistory. The boreholes merit study for engineering and palaeoenvironment, but they affirm a dry, periglacial landscape, not Atlantis-on-the-Avon.

For the record: Stonehenge stood on chalk uplands, overlooking a dynamic but not submerged Avon floodplain. True prehistory needs no such embellishments.

Sources drawn from BGS logs, peer-reviewed papers (e.g., Nature, Quaternary Science Reviews), and independent audits. Langdon's site remains a valuable archive of raw data—if read critically.

Thursday, 12 February 2026

The Bell Beaker Migration: Unravelling Britain's Bronze Age Transformation and the Stonehenge Enigma

In a landmark study published in Nature on 11 February 2026, researchers have illuminated the genetic origins of the Bell Beaker culture, tracing its roots to the Rhine-Meuse region of modern-day Netherlands, Belgium, and western Germany. This work reveals how persistent hunter-gatherer ancestry in that wetland area mingled with incoming Corded Ware populations around 2500 BCE, forming a dynamic group that would profoundly influence northwestern Europe. For Britain, the implications are particularly striking, marking a near-total genetic overhaul that heralded the Bronze Age. While media headlines often dramatise this as the 'replacement' of Stonehenge's Neolithic builders by continental immigrants, a closer examination uncovers a nuanced tale of migration, cultural continuity, and demographic shifts—far from simplistic narratives of conquest or catastrophe.

Britain's Genetic Revolution: From Neolithic Farmers to Bell Beaker Dominance

Britain's Neolithic era, spanning approximately 4000 to 2500 BCE, was characterised by communities descended from Anatolian farmers who had migrated via continental Europe, constructing monumental sites and sustaining agrarian societies. Around 2400 BCE, however, Bell Beaker groups—now genetically linked to the Rhine-Meuse admixture—crossed the Channel, introducing a blend of high hunter-gatherer ancestry (13–18% from local Rhine-Meuse sources) and steppe-derived elements from earlier Yamnaya pastoralists via the Corded Ware complex. Genetic analyses indicate that these newcomers contributed 90–100% of the ancestry in Britain's subsequent Early Bronze Age populations, effectively supplanting the Neolithic genetic profile within centuries.

This shift was more pronounced in Britain than elsewhere in Europe, ushering in innovations such as metalworking, individual burials with distinctive bell-shaped pottery, and possibly early Celtic linguistic roots. The Rhine-Meuse wetlands, with their resilient mixed economies of foraging and limited agriculture, provided a unique cradle for this expansion, enabling Bell Beaker groups to thrive and spread. Contemporary discussions on platforms like X have drawn parallels to modern migration debates, though such analogies risk oversimplifying prehistoric dynamics.



Stonehenge: A Monument at the Crossroads of Eras

At the heart of this transition stands Stonehenge, the Wiltshire megalith that symbolises Britain's prehistoric heritage. Erected in stages from around 3000 BCE by Neolithic farmers, its primary sarsen circle and trilithons were completed circa 2500–2400 BCE, coinciding with the initial Bell Beaker incursions. The study confirms that the monument's original architects—descendants of Anatolian migrants—were largely displaced genetically by these Rhine-Meuse-derived arrivals. Yet, Stonehenge was not forsaken; archaeological evidence suggests the Bell Beaker people adapted and utilised it, potentially modifying elements for their own rituals.

A notable example is the Amesbury Archer, interred near Stonehenge around 2300 BCE with opulent artefacts including gold ornaments, copper implements, and archery gear. Isotopic studies reveal his Alpine upbringing, positioning him as a genetic outlier with reduced steppe ancestry, but the wider British Bell Beaker cohort mirrors the Rhine-Meuse signature. Burials clustered around the site indicate continued ceremonial importance, with solstice alignments persisting amid new practices. As highlighted in Bournemouth University's commentary, the Neolithic lineages behind Stonehenge 'seem to have almost completely vanished' after 2500 BCE, yet the monument's evolution—evidenced by Bell Beaker-era dagger carvings on its stones—points to cultural blending rather than abrupt rupture. Online discourse, such as posts from accounts like @ST0NEHENGE, underscores Stonehenge's role in this narrative, amplifying its enduring allure.

Debunking the 'Great Replacement': Genocide, Disease, or Data Limitations?

The phrase 'great replacement'—evocative of modern polemics—describes the observed 90–100% ancestry turnover, but the study refrains from attributing causes, emphasising patterns over speculation. Was this genocide? Direct proof is absent; while Bronze Age Europe witnessed sporadic violence, Britain's sites lack mass graves or widespread trauma indicative of systematic extermination. Geneticist David Reich has suggested such shifts could stem from conflict, but also from differential reproduction, such as patrilocal systems favouring incoming males—a pattern seen in the disproportionate replacement of Y-chromosomes. Comparisons to later events, like the Anglo-Saxon influx, favour models of assimilation over annihilation.

Alternative explanations abound. A 2024 study implicates ancient plagues like Yersinia pestis in Neolithic population crashes, potentially weakening locals before Bell Beaker arrival, akin to colonial-era epidemics in the Americas. Bell Beaker advantages—mobility via horses, metallurgical skills, and traits like lactose persistence—likely boosted their demographic success. Shared cultural elements, such as megalithic traditions, hint at integration rather than erasure.

Critics question if this is an artefact of sampling bias: ancient DNA derives from burials representing a minuscule fraction (<0.1%) of populations, often elites in prominent sites. Yet, the consistency across over 400 British samples from varied contexts—farms, caves, and barrows—bolsters the turnover model. Reich acknowledges limitations but affirms the robustness of regional patterns. Forums like Reddit and X reflect this caution, urging against overinterpreting data amid ongoing discoveries.

Ultimately, this Bell Beaker saga reframes Britain's prehistory as a mosaic of environmental adaptation, migration, and resilience. Stonehenge endures as a testament to continuity amid change, reminding us that ancient population dynamics defy easy categorisation. As research evolves, it challenges us to approach such stories with nuance, bridging the gap between sensational headlines and scholarly depth.

Unveiling the Persistent Hunter-Gatherer Legacy in Europe's Rhine-Meuse Delta

A groundbreaking study published in Nature on 11 February 2026 has shed new light on the genetic history of prehistoric Europe, particularly in the wetland regions of the modern-day Netherlands, Belgium, and western Germany. Titled "Lasting Lower Rhine–Meuse forager ancestry shaped Bell Beaker expansion," the research, led by Iñigo Olalde and a team of over 40 international collaborators, analysed ancient DNA from 112 individuals spanning 8500 to 1700 BCE. The findings reveal a remarkable persistence of hunter-gatherer ancestry in this Rhine-Meuse delta area, where local populations maintained approximately 50% forager genetic heritage—far higher than in most of continental Europe—up to three millennia after the arrival of early farmers from western Anatolia around 6500 BCE.

Figure 4.

Hunter-gatherer ancestry proportions across Europe between 4500-2500 BCE, estimated using qpAdm. a) Spatial kriging of hunter-gather ancestry. The colors represent the predicted ancestry proportion at each point in the grid. b) Hunter-gatherer ancestry levels in individuals from different European regions.


This high level of hunter-gatherer continuity is attributed to the region's unique ecology, including wetlands and coastal zones ill-suited to the intensive farming practices of the Linearbandkeramik culture. Instead, communities here incorporated limited female farmer ancestry while preserving mixed lifeways that blended foraging with partial agriculture. The study highlights how this distinct genetic profile endured until around 2500 BCE, when the Corded Ware complex introduced steppe ancestry, leading to the formation of Bell Beaker groups through admixture: local Rhine-Meuse people contributed 13–18% ancestry, fused with incoming Corded Ware migrants of both sexes. These Bell Beaker populations then expanded, profoundly impacting northwestern Europe, including Britain, where they drove a near-total (90–100%) replacement of Neolithic ancestry, marking the onset of the Bronze Age.

The revelations underscore the role of environmental niches in shaping human migration and cultural evolution, challenging broader narratives of uniform population turnover across Europe. However, accessing these insights is frustratingly restricted. The full article in Nature (DOI: 10.1038/s41586-026-10111-8) sits behind a paywall, requiring institutional access or payment, which limits public engagement with primary science at a time when open knowledge should be prioritised. Fortunately, a preprint version is freely available on bioRxiv (posted 25 March 2025, DOI: 10.1101/2025.03.24.644985) and in PubMed Central, offering the accepted manuscript under a CC BY 4.0 licence. Raw data, including genotypes and DNA sequences, can be obtained from the Reich Lab's Harvard Dataverse repository and the European Nucleotide Archive (accession PRJEB105335), enabling further research.

Equally disheartening is how popular news coverage, such as articles in Phys.org and Nature's own news section, often summarises the findings without guiding readers to these open resources or the original data. This omission perpetuates a barrier between sensational headlines—like claims of "surprising origins" of Britain's Bronze Age immigrants—and the rigorous, verifiable science beneath, leaving enthusiasts to hunt for details themselves. In an era of misinformation, clearer signposting to primary sources in media reports would democratise discovery.

  • Main Academic Paper: Olalde, I. et al. (2026). Lasting Lower Rhine–Meuse forager ancestry shaped Bell Beaker expansion. Nature. DOI: 10.1038/s41586-026-10111-8.URL: https://www.nature.com/articles/s41586-026-10111-8   Author provided access - https://www.nature.com/articles/s41586-026-10111-8.epdf?sharing_token=tE6R2qWBL5dGPoMyFpTj4tRgN0jAjWel9jnR3ZoTv0NppUPBJX-KqUtdLg1ZB1p6i2FTkamw8iLRHhvoN_BJTKOGkbg0mTxraEKVBbQpD907M8h-NcYWcoEDEh3sjvv7UpRuVxiUB2uAzv5ZhHfZfTm_GHRA5DqycpSZTEqNvLI%3D
  • Preprint Version: Olalde, I. et al. (2025). Long-term hunter-gatherer continuity in the Rhine-Meuse region was disrupted by local formation of expansive Bell Beaker groups. bioRxiv. DOI: 10.1101/2025.03.24.644985.URL: https://www.biorxiv.org/content/10.1101/2025.03.24.644985v1 (freely accessible under CC BY 4.0 licence)
  • PubMed Central Version: Olalde, I. et al. (2026). Long-term hunter-gatherer continuity in the Rhine-Meuse region was disrupted by local formation of expansive Bell Beaker groups. PMC. PMC11974744.URL: https://pmc.ncbi.nlm.nih.gov/articles/PMC11974744 (accepted manuscript, open access)
  • ResearchGate PDF: Olalde, I. et al. (2025). Long-term hunter-gatherer continuity in the Rhine-Meuse region was disrupted by local formation of expansive Bell Beaker groups.URL: https://www.researchgate.net/publication/390165125_Long-term_hunter-gatherer_continuity_in_the_Rhine-Meuse_region_was_disrupted_by_local_formation_of_expansive_Bell_Beaker_groups (PDF download available)
  • Genotype Data Repository: Reich Lab Datasets (Harvard University).URL: https://reich.hms.harvard.edu/datasets (includes data from this study)
  • Raw DNA Sequences Archive: European Nucleotide Archive (ENA), accession PRJEB105335.URL: https://www.ebi.ac.uk/ena/browser/view/PRJEB105335
  • Phys.org News Article: Ancient DNA suggests hunter-gatherers in Europe's lowlands endured until 2500 BCE.URL: https://phys.org/news/2026-02-ancient-dna-hunter-europe-lowlands.html
  • Nature News Article: Hunter-gatherers took refuge in European 'water world' for millennia.URL: https://www.nature.com/articles/d41586-026-00440-z
  • New Scientist Article (basis for the original linked piece): The surprising origins of Britain's Bronze Age immigrants revealed.URL: https://www.newscientist.com/article/2515260-the-surprising-origins-of-britains-bronze-age-immigrants-revealed
  • Wednesday, 11 February 2026

    A Speculative Hypothesis: Neolithic Cattle Traction in the Transport of Bluestones to Stonehenge – Insights from Isotopic Analysis and Veterinary Parallels

    Abstract

    Recent isotopic analysis of a Neolithic cow tooth excavated from Stonehenge's ditch, dated to approximately 3350–2920 BC, reveals a migratory journey mirroring that of the bluestones, with a pronounced lead (Pb) spike interpreted conventionally as metabolic stress from calving. This paper proposes an alternative speculative hypothesis: the cow may have been employed in draught labour for bluestone transport, with the lead spike resulting from bone mobilisation during fracture healing induced by ill-fitting harnesses. Drawing on veterinary studies of lead dynamics in mammals, archaeological evidence for early cattle traction in Neolithic Europe, and parallels from modern draft animals, this interpretation aligns locations, timings, and ritual depositions at Stonehenge. While speculative, it fits available evidence and suggests avenues for future research, including palaeopathological examinations of cattle remains and experimental reconstructions of Neolithic harnessing.


    Introduction

    Stonehenge, constructed in phases between circa 3000 BC and 1500 BC, stands as a testament to Neolithic engineering prowess and social organisation. Its inner circle comprises bluestones—predominantly dolerite, rhyolite, and volcanic tuff—sourced from the Preseli Hills in Pembrokeshire, Wales. The mechanism of their transport has sparked debate: human agency via overland sledges or rafts, glacial entrainment by the Irish Sea Ice Stream, or a combination thereof. Proponents of human transport emphasise communal labour and symbolic motivations, while glacial theories highlight geological alignments and the absence of direct haulage evidence.

    Recent multi-isotopic analysis of a Bos taurus third molar (M3) from Stonehenge's south entrance ditch, conducted by Evans et al. (2025), provides a biographical snapshot of a female cow's life circa 2995–2900 BC, coinciding with Stonehenge's initial phase. Strontium (Sr), oxygen (O), carbon (C), and lead (Pb) isotopes trace a journey from radiogenic Welsh terrains to chalky Wessex pastures, with a sharp Pb spike suggesting physiological stress. Conventionally attributed to lactation or calving, this spike may alternatively indicate trauma from draught work, particularly if harness-induced injuries led to bone remodelling.

    This hypothesis integrates isotopic data with veterinary insights into lead mobilisation during fracture healing and archaeological evidence for Neolithic cattle traction. It posits that cattle, revered in Neolithic societies, served dual roles in labour and ritual, potentially hauling bluestones before ceremonial deposition. While speculative, it offers a coherent narrative fitting chronological, geographical, and cultural evidence.

    The Neolithic Cow Tooth Evidence: Isotopic Analysis and Geographical Mobility

    The tooth in question, an M3 from a female Bos taurus jawbone, was excavated in 1924 and radiocarbon-dated to 3350–2920 BC, aligning with Stonehenge's Phase 1 construction. Sequential sampling of nine enamel slices captured six months of growth from winter to summer in the cow's second year. Strontium isotopes (⁸⁷Sr/⁸⁶Sr) shifted from high values indicative of Palaeozoic rocks in Wales (e.g., Preseli Hills) to lower ratios typical of Cretaceous chalk in Wessex. Oxygen and carbon isotopes reflected seasonal dietary transitions from woodland to open grassland, supporting transhumance or directed movement.

    A notable Pb isotope spike in late winter–spring slices suggests mobilisation from skeletal stores, conventionally linked to reproductive demands. The jawbone's deliberate placement implies ritual significance, akin to feasting deposits near Stonehenge involving distant-sourced animals. This geographical and temporal congruence with bluestone provenance invites speculation on the cow's role in transport.

    Interpreting the Lead Spike: Alternatives to Reproductive Stress

    Lead, stored predominantly in bone (over 90% in adults, 75% in juveniles), mobilises during heightened bone turnover, such as pregnancy, lactation, or fracture healing. Veterinary and toxicological studies confirm that fractures accelerate resorption via osteoclast activity, releasing Pb into circulation and incorporating it into forming enamel. In lead-exposed animals, fractures delay healing and exacerbate mobilisation, as seen in rodent models where tibial fractures increased systemic Pb levels. Neolithic environments, with natural Pb from soils, would amplify this effect.

    While lactation remains plausible, the spike's timing and intensity could reflect trauma from haulage. Ill-fitting harnesses in draft animals cause pressure lesions, gait abnormalities, and fractures, leading to bone remodelling. In Neolithic contexts, rudimentary yokes or collars could induce such injuries, mobilising Pb during repair. This alternative fits the cow's young age and migratory pattern, suggesting labour-induced stress.

    Harness-Related Injuries and Bone Damage in Draft Animals

    Archaeological and veterinary evidence demonstrates that poorly fitted harnesses inflict significant damage on draft animals. Bronze Age chest harnesses, used for horses and cattle, often caused pressure sores, spinal lesions, and joint degeneration. Neck collars, common in oxen, exacerbate orthopaedic issues, with studies showing higher pathology rates in collared animals. In Neolithic Britain, yoke fragments and bone pathologies indicate similar practices. These injuries, including micro-fractures, could trigger Pb spikes in enamel.

    Evidence for Cattle Traction in Neolithic Contexts

    Palaeopathological and biometric data from sites like ÇatalhöyĂĽk (Anatolia) and Knossos (Crete) indicate cattle traction from the 7th millennium BC. In Britain and Ireland, mid-4th millennium BC evidence from Kilshane and Etton suggests specialised husbandry for draught oxen. Sub-pathological alterations in cattle phalanges from Western Balkans sites (6100–4500 BC) support light traction. Applied to Stonehenge, this implies cattle could haul multi-tonne bluestones, as proposed in recent models.

    Integrating the Evidence: A Haulage Hypothesis

    Synthesising these strands, the cow's Welsh origin, migratory path, Pb spike, and ritual deposition align with bluestone transport. Harness-induced fractures could explain the spike via bone mobilisation, with the cow's youth suggesting intensive use. Neolithic reverence for cattle, evident in symbolism and feasting, may culminate in sacrificial deposition post-labour. This hypothesis counters glacial theories by emphasising human-animal collaboration.

    Modern Analogies

    Modern analogues from ox pulling contests illustrate the substantial hauling capacity of yoked cattle, supporting the plausibility of Neolithic draught use for multi-tonne bluestones, while also highlighting welfare risks from intensive labour and harnessing. In contemporary North American events, rooted in 19th-century agricultural practices and formalised at fairs since the early 20th century, pairs of oxen—typically weighing 1,500–3,400 lbs and categorised by weight classes—can pull loads exceeding three times their body weight for short distances, such as a 1,994 lb team dragging 6,400 lbs (3.2 times their mass) or heavier teams managing 14,000 lbs. Well-conditioned oxen sustain drafts of 10–12% of their body weight over extended periods, with pairs synergistically amplifying output (e.g., a single ox pulling 5,000 lbs versus a yoke achieving 15,000 lbs), echoing archaeological evidence of early traction and experimental reconstructions for megalith transport. Historical Basque 'idi probak' and Sankranti Ox pulling contests in Narayanapuram, Anantapur district of India provide more examples.

    Implications and Future Research

    This interpretation enriches understandings of Neolithic mobility, economy, and ritual, highlighting integrated human-animal systems. Future studies could examine cattle bones for traction pathologies, simulate harness effects on Pb mobilisation, and model bluestone haulage with oxen teams. Comparative isotopic analyses from Welsh sites may reveal herd patterns.

    Conclusion

    Though speculative, this hypothesis—that a Neolithic cow hauled bluestones, suffering harness-induced injury recorded in enamel Pb—coherently integrates evidence. It underscores the multifaceted roles of cattle in prehistoric societies, bridging labour and symbolism, and invites rigorous testing to refine Stonehenge's narrative. 

    References


    Thursday, 5 February 2026

    The Stones of Britain

    I highly recommend this book I have just read: Simply beautifully written and informative, new light on familiar places and insights into new places. But not a text book, a lovely memoir. 



    The Stones of Britain

    A History of Britain through its Geology

    Jon Cannon 

    "This is the definitive tale of how our island history is written in stone.

    The Stones of Britain is about how rocks make places, exploring the connection between geology and landscape, the stones beneath the surface and the history that has played out above it. It movingly investigates the diverse character of the British landscape, and the rich variety of places that have come to be as a result.

    We discover that the shattered granite landscape of Dartmoor is different from the soft red sandstone hills of east Devon; the rolling chalk downs distinct from the gritty moors of Yorkshire - and each has a unique, fascinating story to tell.

    Interweaved with beautiful meditations on place, home and belonging, The Stones of Britain interprets these stories. It explains the nature of place on the island of Britain, revealing the landscape as the joint product of geology and man: an extraordinary history rooted in stone.

    Jon Cannon (1962-2023) was an architectural historian, lecturer and Canon Historian for Bristol Cathedral, and also worked for the Royal Commission on the Historical Monuments of England and English Heritage. Unfortunately Jon passed away in the process of making this book, but his passion for landscape, history and culture lives on and leaps defiantly off the page - culminating in a richly researched and hugely special offering."